
MRPOD Documentation
Release 1.0.0

Zhiyao Yin

Jul 20, 2021

Contents

1 Contents 1
1.1 Greetings . 1
1.2 Wavelet Transform . 2
1.3 Modal Decomposition . 7
1.4 Tutorials . 9

Bibliography 21

Python Module Index 23

Index 25

i

ii

CHAPTER 1

Contents

See also:

For more detailed discussions on MRPOD, its derivations and applications, please see the publication [MRPOD]. We
also kindly ask you to reference this paper if you use mrpod for your publications.

1.1 Greetings

Welcome to the documentation of the Python module mrpod for performing Multiresolution Proper Orthogonal De-
composition (MRPOD) of multi-dimensional time series. Although mrpodwas created to tackle problems in turbulent
flows, this module is equally applicable to various data series to achieve frequency-filtering, classification of dynamics,
identification of discontinuities, etc. The built-in wavelet sub-module can be easily applied to 1-D and 2-D dataset for
wavelet decomposition and reconstruction.

1.1.1 Why mrpod

Data-driven, modal-decomposition techniques such as POD (also known as the Principle Component Analysis, PCA)
and Dynamic Mode Decomposition (DMD) have been widely implemented to extract periodic, coherent structures in
turbulent flows. In reacting flows such as confined turbulent flames (in gas turbines), however, we are often confronted
with both periodic (e.g., hydrodynamic and acoustic instabilities) and non-periodic dynamics (e.g., flame lift-off,
flashback, and bistability), which can coexist over a wide range of time scales and may even interact with each other.

In their most rudimentary forms, POD and DMD have proven insufficient at separating these dynamics while resolv-
ing their temporal behaviors (such as discontinuities) at the same time. On the other hand, by marrying the con-
cept of wavelet-based Multiresolution Analysis (MRA) with standard modal decompositions, multiresolution DMD
([MRDMD]) and multi-scale POD ([mPOD]) have demonstrated robust capabilities at identifying unsteady dynamics
and discontinuities in time series.

Based on a similar concept, multiresolution POD ([MRPOD]) has been developed by combining Maximum-Overlap
Discrete Wavelet Transform (MODWT) with conventional snapshot POD. MRPOD has been successfully applied to

1

MRPOD Documentation, Release 1.0.0

time series of velocity (vector) and scalar fields obtained by kHz-rate laser diagnostics (e.g., Particle Image Velocime-
try or PIV, Planar Laser-induced Fluorescence or PLIF) in the so-called bistable turbulent swirl flame, a common
phenomenon encountered in gas turbines.

1.1.2 Why MODWT

mrpod was developed to satisfy primarily the following two criteria:

• Dynamics with various frequencies can be identified and adequately isolated.

• Discontinuities in temporal behaviors can be properly resolved and align perfectly with the original data series
for appropriate comparison.

Unlike the classical DWT, shift-invariant DWT such as MODWT is well-defined for arbitrary sample sizes and is
not sensitive to the “break-in” point in the time series. Additionally, MODWT affords a more “square-looking” gain
response and hence a higher spectral isolation especially for cases with dynamics densely packed in the frequency
domain. Although MODWT sacrifices orthonormality, it can still carry out an exact analysis of variance as well as a
perfect reconstruction of the time series. With the two aforementioned criteria in mind, MODWT has demonstrated
overall better performance than DWT at a (manageable) cost of computational time.

1.1.3 Why not pywt

Instead of using the existing Python library pywt to carry out wavelet transform, a matrix-operation based routine was
written from the ground up specifically for more efficient 1-D and 2-D wavelet decomposition/reconstruction of multi-
dimensional data series stored in ndarrays. Although several commonly used wavelet filters are built into mrpod, the
vast library of wavelet filters in pywt should be taken advantage of when constructing custom composite filters using
the filter-cascading method in mrpod.

1.2 Wavelet Transform

Matrix-based computation of discrete wavelet transform: 1. Construct the wavelet filter

class mrpod.wavelet_transform.CompositeFilter(g=None, wavelet=’D(8)’)
Generate composite filter Composite filter generated from a given wavelet for a specific decomposition level
and all the scales involved.

Parameters

g [1d array, optional] Scaling (lowpass) filter for calculating the wavelet filter.

wavelet [str, optional] Name of the scaling filter (g). Default is ‘D(8)’. Built-in options are:
‘Haar’, ‘D(4)’, ‘D(8)’, ‘D(10)’, ‘D(12)’, ‘LA(8)’, ‘LA(12)’, ‘LA(16)’

• ‘D(8)’: Daubechies standard wavelet with 8 elements.

• ‘LA(8)’: Least-asymmetric variant of the Daubechies wavelet with 8 elements.

Other wavelets can be found in the following sources:

• Wavelet Methods for Time Series Analysis by Percival and Walden.

• Import from the pywt package using pywt.Wavelet(). Note that only half of the
wavelet length is indicated in the name of the wavelets. E.g., the equivalent of ‘D(8)’ and
‘LA(8)’ in pywt are ‘db4’ and ‘sym4’.

2 Chapter 1. Contents

MRPOD Documentation, Release 1.0.0

Notes

The generated filters need to be normalized by 2𝑗/2 for maximum overlap wavelet transforms. This is taken into
account in WaveletTransform.

filter_cascade(J)
Populate the collection of filters corresponding to all the j and n in a cascading scheme based on the
specified target decomposition level J.

Parameters

J [int] Target decomposition level (or the maximum decomposition level). It should be larger
than 1.

max_J(N)
Maximum decomposition level for the data series with the given wavelet filter. Although there is tech-
nically no upper limit for MODWT, it is still recommended to apply the same criterion as in the case of
DWT.

Parameters

N [int] Length of the data series

Returns

max_dec [int] (Recommended) Maximum decomposition level for the data series with the
given wavelet filter.

save_filterbank(full_path_write)
Save the computed filterbank to the specified local directory.

Parameters

full_path_write [obj] Full path to the file, recommended to use “./filter-
bank_[filtertype]_[j].pkl” to name the file.

sqd_gain_fcn(j, n, fs=None, max_overlap=False)
Squared gain function of a given wavelet filter at subscale n and decomposition level j.

Parameters

j [int] Decomposition level j

n [int] Index of the scale from a certain decomposition level j, 𝑛 = 0, 1 . . . , 2𝑗−1 − 1.

fs [None, 1d array, optional] Frequencies to be used for caclulating the transfer function [0,
1/2).

max_overlap [False, bool, optional] If True, the output represent the squared gain from
MODWT.

Returns

gain [1d array] Squared gain for the specified filter

fs [1d array] Standard frequency range

u_n(n)
Filter corresponds to the scale n of a level j, i.e. a selection of g or h.

Parameters

n [int] Index of the scale from a certain decomposition level j, 𝑛 = 0, 1 . . . , 2𝑗−1 − 1.

Returns

1.2. Wavelet Transform 3

MRPOD Documentation, Release 1.0.0

u_n [1d array] Filter coefficients (either g or h).

class mrpod.wavelet_transform.WaveletTransform(X, j=None, mode=’max-
overlap’, filterbank=None,
full_path_filterbank=None)

Basic class for discrete wavelet (packet) transform.

Input either data or correlation matrix.

Parameters

X [ndarray] Input data. Two shapes are admissible: - NxM with N being the sample size and M
the total amount of physical coordinates (for 1d wavelet transform) - NxN with N being the
sample size (for 2d wavelet transform)

j [int] Target decomposition level. A value is expected if ‘standard’ mode is used.

mode [‘max-overlap’, str. optional] Two modes of discrete wavelet transform to choose from:
- ‘max-overlap’, perform maximum overlap DWT - ‘standard’, perform DWT.

filterbank [None, dict, optional] Precalculated filterbank via CompositeFilter(). It is
also possible to input custom filters in the following format: {Node: Coefficients}. Node
has to follow the naming convention ‘[j][0]’.

full_path_filterbank [None, obj, optional] Path to the filterbank pickle file created using
save_filterbank() in CompositeFilter().

detail_bundle_1d(js, scales)
Reconstruct the input data with MODWT at specified j levels and with desired scales, along the axis=0
dimension of the data (i.e., N in an NxM data).

Parameters

js [1d array of int] The correponding decomposition levels. Different j levels are admissible.

scales: 1d array of int All the scales included in the reconstruction. Discrete scales are
admissible.

Returns

B_details [ndarray] Reconstructed detail bundle of input data with the dimension of NxM.

Notes

js and scales need to have the same length.

detail_bundle_2d(js, scales)
Reconstruct the input data (2d) with MODWPT at specified j and with desired scales.

Parameters

js [1d arrray of int] The correponding decomposition levels. Different j levels are admissible.

scales: 1d array of int All the scales included in the reconstruction. Discrete scales are
admissible.

Returns

K_mat [ndarray] Reconstructed input data with the dimension of NxN.

T_mat: ndarray Transform matrix used to perform the transform.

filter_matrix(j, n)
Convert the composite filter u_j into its matrix form based on the sample size of N.

4 Chapter 1. Contents

MRPOD Documentation, Release 1.0.0

Parameters

j [int] The decomposition level.

n [int] The scale in level j.

index_W [int] Indices of the matrix form of the wavelet filter.

Returns

u_j_mat [ndarray] Composite filter u_j in its matrix form

index_W
Matrix conversion indices for data series and wavelet coefficient.

power_spectrum_1d(j, scales)
Calculate the approximated power spectrum of the input data based on wavelet_coeff_1d.

Parameters

j [int] The decomposition level.

scales: list, 1d array of int All the scales included in the decomposition.

Returns

power_spectrum [1d array] Power spectrum at specific scales of j. It has a size of
len(scales).

power_spectrum_2d(j, scales)
Calculate the power spectrum of the input data based on wavelet_coeff_2d.

Parameters

j [int] The decomposition level.

scales: list, 1d array of int All the scales included in the decomposition.

Returns

power_spectrum [1d array] Power spectrum at specific scales of j. It has a size of
len(scales).

wavelet_coeff_1d(j, scales)
Decompose the input data with MODWPT at specified j and with desired scales, along the axis=0 dimen-
sion of the data (i.e., N in an NxM data). It is possible to combine multiple (discrete) scales to achieve
desired filtering effect.

Parameters

j [int] The decomposition level.

scales: list, 1d array of int All the scales included in the decomposition

Returns

W_j [ndarray] Wavelet coefficients from decomposing input data. It has a dimension of
len(scales)xNxM

Notes

1. Not recommended to set a large number of scales if M is very large

2. Better to start with a single scale

1.2. Wavelet Transform 5

MRPOD Documentation, Release 1.0.0

wavelet_coeff_2d(j, scales)
Decompose the input data with MODWT at specified j and with desired scales, along both axes of the data
dimension. Only data with a shape of NxN is admissible due to the precomputed Designed for handling
cross-correlation matrices.

Parameters

j [int] The decomposition level.

scales [list, 1d array of int] All the scales included in the decomposition.

Returns

W_j [ndarray] Wavelet coefficients from decomposing input data. It has a dimension of
len(scales)xNxN.

mrpod.wavelet_transform.find_scale_index(level, x=’0’, y=’1’)
Gray code order is used here to generate indices for the scales of each decomposition level in a wavelet packet
transform. Either ‘a’ and ‘d’ (approximation and detail) or ‘0’ and ‘1’ are used. E.g., for a level=1 decomposi-
tion, the possible combination will be ‘ad’ and ‘da’. For level=2, it will be ‘aa’, ‘ad’, ‘da’, ‘dd’. The indices are
also ordered by their corresponding frequency bandpasses.

Parameters

level [int] Dcomposition level for WPT.

x [‘0’, str, optional] First index in the gray code. ‘a’ is also generally used.

y [‘1’, str, optional] Second index in the gray code. ‘d’ is also generally used.

Returns

graycode_order [list] The list of indices ordered by their corresponding frequencies.

mrpod.wavelet_transform.scale_to_frq(f_sample, j)
Convert scales at a given j to their corresponding center frequencies.

Parameters

f_sample [float] Sampling rate of the data.

j [int] The decomposition level.

Returns

frq [1d array] Center frequencies of all the scales at a given level j

mrpod.wavelet_transform.time_shift(w_j, L, j, scale)
Time shift the wavelet coefficient so that it matches the features in the original signal temporally. Only works if
the half length of the wavelet is even and if the wavelet is of the LA type (symlet).

Parameters

w_j [1d array] Wavelet coefficient.

L [int] Length of the wavelet used to calculate the wavelet coefficient.

j [int] Decomposition level.

scale [int] The specific scale (n) the wavelet coefficient corresponds to.

Returns

w_j [1d array] Wavelet coefficient corrected for its corresponding time shift

mrpod.wavelet_transform.transfer_fcn(coeff_filter, freq_domain)
Transfer function of a given wavelet filter.

6 Chapter 1. Contents

MRPOD Documentation, Release 1.0.0

Parameters

coeff_filter [1d array] Coefficients of the filter

freq_domain [1d array] Frequencies to be used for calculating the transfer function

Returns

T_fcn [1d array] Transfer function of the given filter

1.3 Modal Decomposition

mrpod.modal_decomposition.mrpod_detail_bundle(data_array, *args, num_of_modes=50,
seg=10, subtract_avg=False, re-
flect=False, normalize_mode=True,
full_path_write=None, **kwargs)

Computes MRPOD modes, eigvals and proj coeffs from a dataset arranged in an ndarray of the shape of
NxM0xM1x. . . , with N being the dimension that will be wavelet transformed.

Parameters

data_array [ndarray] data array arranged in a dimension of NxM0xM1x. . . , such as a time
series (N) of multi- dimensional scalar/vector fields.

num_of_modes [50, int, optional] Number of modes to be computed (from the most energetic
Mode 1). By default, all the valid modes are computed.

seg [10, int, optional] In case of insufficient computer RAM, the data_array can be seg-
mented along the M dimension of the reshaped NxM and pieced together after the filtering.

subtract_avg [False, bool, optional] If True, the ensemble average of the data_array along
N is subtracted from the dataset.

reflect [False, bool, optional] If True, the cross-correlation matrix as well as the dataset is
padded symmetrically along the sample axis.

normalize_mode [True, bool, optional] If True, the magnitudes of the modes will be normal-
ized by their corresponding eingenvalues and the sample size.

full_path_write [None, path obj, optional] If provided, the output is saved locally in the speci-
fied directory.

Returns

dict A dictionary containing the eigenvalues, projection coefficients, POD modes, and the cross-
correlation matrix.

Other Parameters

**kwargs : Keyword arguments from mrpod_eigendecomp() necessary to perform a
wavelet transform.

mrpod.modal_decomposition.mrpod_eigendecomp(corr_mat, js, scales, pod_fcn=None, re-
flect=False, **kwargs)

Apply eigenvalue decomposition to cross-correlation matrices reconstructed in specific bandpasses using
WaveletTranform.

Parameters

corr_mat [ndarray] Cross-correlation matrix with a dimension of NxN

js [1d arrray of int] The correponding decomposition levels. Different j levels are admissible
for “max-overlap”.

1.3. Modal Decomposition 7

MRPOD Documentation, Release 1.0.0

scales [1d array of int] All the scales included in the reconstruction. Discrete scales are admis-
sible.

pod_fcn [function object] Function to solve the eigenvalue problem by taking in a pre-computed
cross-correlation matrix. The output must conform to [eigvals, proj_coeffs]. If None, the
built-in solver pod_eigendecomp is used.

reflect [False, bool, optional] If true, the corr_mat is padded symmetrically along both axes and
is truncated after reconstruction and before eigenvalue decomposition. Such measure helps
reducing the effect of uneven boundaries in the wavelet transform process.

reflected [False, bool, optional] If true, the supplied corr_mat has already been padded and is
truncated before fed into the eigenvalue solver.

Returns

eigvals [1d array] Eigenvalues from the decomposition

proj_coeffs [ndarray] Projection coefficients (temporal modes) of the shape of NxN

K [ndarray] Reconstructed cross-correlation matrix within the designed bandpasses.

Other Parameters

**kwargs : Keyword arguments from WaveletTransform necessary to perform a wavelet
transform.

mrpod.modal_decomposition.ortho_check(v1, v2)
Check the orthogonality of two vectors.

mrpod.modal_decomposition.pod_eigendecomp(corr_mat, tol=1e-14)
Solving the eigenvalue problem of AX=Lambda.

Parameters

corr_mat [ndarray] Cross-correlation matrix with a dimension of NxN.

Returns

eigvals [1d array] Eigenvalues from the decomposition.

proj_coeffs: ndarray Projection coefficients (temporal modes) of the shape of NxN.

mrpod.modal_decomposition.pod_modes(data_array, pod_fcn=None, eigvals=None,
proj_coeffs=None, num_of_modes=None, normal-
ize_mode=True)

Calculate the POD modes based on the eigenvalue decomposition.

Parameters

data_array [ndarray] Data array arranged in a dimension of NxM0xM1x. . . , such as a time
series (N) of multi- dimensional scalar/vector fields.

pod_fcn [function object] Function to solve the eigenvalue problem by taking in a pre-computed
cross-correlation matrix. The output must conform to [eigvals, proj_coeffs]. If None, the
built-in solver pod_eigendecomp is used.

eigvals [1d array] Eigenvalues from the decomposition.

proj_coeffs: ndarray Projection coefficients (temporal modes) of the shape of NxN.

num_of_modes [None, int, optional] Number of modes to be computed (from the most ener-
getic Mode 1). By default, all the valid modes are computed.

normalize_mode [True, bool, optional] If True, the magnitudes of the modes will be normal-
ized by their corresponding eingenvalues and the sample size.

8 Chapter 1. Contents

MRPOD Documentation, Release 1.0.0

Returns

dict A dictionary containing the eigenvalues, projection coefficients, POD modes, and the cross-
correlation matrix.

1.4 Tutorials

A few tutorials are included here to get you started with wavelet-based MRA, POD as well as MRPOD using the
module mrpod.

1.4.1 Pattern recognition with POD

For this tutorial, we will look at how to decompose the following time series of (synthesized) vector fields that contains
a typical vortex pattern found in swirl-stabilized combustors using POD:

The goal is to try to recognize the flow pattern based on the POD results.

Synthesize dataset

This vortex pattern is a signature of the 3-dimensional helical precessing vortex core in a 2D cut plane. This is usually
seen in planar Particle Image Velocimetry measurements. To create these traveling vortices, two stationary modes are
required as dictated by:

𝑣(𝑥, 𝑡) = 𝑒−𝑖𝑤𝑡Φ(𝑥) = cos𝑤𝑡 · ℜ(Φ) + sin𝑤𝑡 · ℑ(Φ)

In this specific case ℜ(Φ) and ℑ(Φ) are constructed as:

respectively, with temporal behaviors set as:

1.4. Tutorials 9

MRPOD Documentation, Release 1.0.0

Notice that the two stationary modes have a spatial shift of roughly a quarter of the wavelength and a temporal shift
of 90 degrees (as implied in the equation above). Now that we have an artificial dataset, we can decompose it with the
aim of identifying this vortex pattern. What kind of POD modes do we expect to extract out of it?

Note: The same dataset can be created using functions given in examples.vortex_shedding.

POD of the dataset

Using the built-in function pod_modes, the process can be carried out on the dataset v_array (containing 400
frames at 10 kHz sampling rate, the vortex dynamics is set at 470 Hz) as:

from mrpod import pod_modes

v_array is the pre-generated dataset
pod_results = pod_modes(v_array, num_of_modes=4, normalize_mode=True)

get the modes and projection coefficients
proj_coeffs = pod_results['proj_coeffs']
modes = pod_results['modes']
eigvals = pod_results['eigvals']
normalize eigenvalues
eigvals = eigvals/eigvals.sum()*100

Normalizing the eigenvalues is a common practice to get a sense of the contribution of the POD modes to the total
kinetic energy. From the results we can see that the first two POD modes have nearly identical eigenvalues and
compose nearly 100% of the kinetic energy. If we visualize the two POD modes in the same fashion as the vector
fields above, we get:

10 Chapter 1. Contents

MRPOD Documentation, Release 1.0.0

As can be seen, these two POD modes look nearly identical to the two modes used to construct the dataset. The results
suggest that two POD modes are needed to describe a traveling vortex in the flow field. Bearing this in mind, let’s look
at the projection coefficients of these two modes:

When the projection coefficients are plotted against each other in a so-called phase portrait, they fall onto a perfect
circle, indicating the phase shift of 90 degrees. A peak at 470 Hz can be identified in both of their power spectra
densities (PSD). Both the phase shift and the peak frequency match the values used to generate the traveling vortices
in the first place.

Without prior knowledge of how the flow dynamic is created, it is perhaps not immediately clear what we should make
of the POD modes. The example shown here aims to answer this question: how can we identify coherent structures in
the flow field (or similar environments) from the POD results? The clues can be found above and can be summarized
below:

• Two POD modes are necessary to describe a traveling structure;

• They should have similar spatial appearance and comparable eigenvalues;

• Their projection coefficients should exhibit a regular correlation in the phase portrait,

• which should have very similar footprints in the spectral domain.

These 4 criteria should be considered when trying to recognize physical flow patterns based on data-driven POD.

Reduced-order reconstruction

Sometimes it is not immediately clear from the POD modes what flow pattern they represent. It is therefore useful to
visualize the flow pattern, especially in the case of noisy dataset, such as the following:

This dataset is identical to the one shown on the top of this page but with added random (white) noise in each frame to
obscure the pattern of the traveling vortices. From POD of the dataset (also 400 frames at 10 kHz), we get (first two
modes):

1.4. Tutorials 11

MRPOD Documentation, Release 1.0.0

The results are nearly identical to the ones from the original dataset. It is clear that with this noise level POD has no
problem of extracting the modes associated to the flow pattern. Since now that the flow pattern is not immediately
clear from the noisy dataset, can we somehow visualize it with the POD modes? Recall how the original dataset is
generated and analogously we can “reconstruct” the dataset with selected modes according to

𝑣reduced =

𝑛∑︁
𝑖=1

𝑎𝑖Φ𝑖

where 𝑛 6 𝑁 (N is the total number of modes with non-zero eigenvalues). If we include just the two modes corre-
sponding to the traveling vortices, the equation becomes essentially equivalent to the one shown on the top and the
“reduced-order” flow field becomes:

So now we have a visual idea what the POD modes entail. This also shows how POD can be used to denoise a dataset,
i.e., by leaving out noisy modes during the reduced-order reconstruction.

Where POD fails

12 Chapter 1. Contents

MRPOD Documentation, Release 1.0.0

Sub-noise-level dynamics

We have seen how POD can be used to denoise a dataset and extract obscured flow pattern from it. There is however
a limit. When the flow pattern is overwhelmed by noise (in terms of kinetic energy), POD won’t perform as well, as
shown for the noisier dataset below:

The noise level has been cranked way up. The POD results below are quite noisy to the point that they cannot really
be used to unambiguously visualize the hidden flow pattern (only the first two modes are shown):

Coexistence of multiple dynamics

Another drawback of POD is that it is a purely energy-based decomposition process and it disregards all temporal
correlations in the dataset. Even if we were to randomly shuffle the 400 frames in the datasets above, we would get
exactly the same results (we wouldn’t be able to get the frequency of the traveling vortices though). This lack of
so-called “dynamic ranking” becomes quite problematic in a scenario where multiple dynamics coexist across a wide
range of time scales.

1.4. Tutorials 13

MRPOD Documentation, Release 1.0.0

To demonstrate this, we can introduce another vortex pattern into the dataset that has different spatial and temporal
behaviors from the one above:

And our goal now is try to decompose the new mixed dataset below to separate these two flow patterns:

If we perform POD on this dataset, we get the first two modes (mode 1 and 2):

and the following two modes (mode 3 and 4):

14 Chapter 1. Contents

MRPOD Documentation, Release 1.0.0

It is obvious that POD does not just automatically “group” or “isolate” the same dynamic into two modes. Instead, it
essentially lumps different dynamics and distribute them among several modes (four modes in this case). Neither the
spatial modes nor their projection coefficients possess the spectral purity to allow unambiguous interpretation of the
underlying dynamics.

Warning: From these two examples it is clear that POD modes do not equate physical patterns. It is always
necessary to first understand the underlying physics (in this case, the traveling structures) before attempting to
interpret the POD results.

See also:

To fix this issue, we need to introduce dynamic ranking into the POD process. In the next tutorial Pattern recognition
with MRPOD, MRPOD is demonstrated on these two “challenging” datasets to showcase its capabilities.

1.4.2 Pattern recognition with MRPOD

1.4. Tutorials 15

MRPOD Documentation, Release 1.0.0

Note: Please refer to the previous tutorial Pattern recognition with POD for more details regarding the syn-
thesized datasets and the performances of POD in pattern recognition. Instead of pod_modes, the function
mrpod_detail_bundle will be used to carry out the task.

We will pick up right where we left in the previous tutorial and use the same examples to demonstrate the advantages
of MRPOD over POD for pattern recognition in the flow field.

Sub-noise-level dynamics

For the very noisy dataset created to challenge POD:

By performing MRPOD within a shortpass imposed by the composite wavelet filter,

from mrpod import mrpod_detail_bundle

pre-generated filterbank with symlet of the length 24
dir_filterbank = "filters_sym12_j=8.pkl"

set decomposition level j and scale n
j_level = 3
n_scale = 0

v_array is the pre-generated dataset
pod_results = mrpod_detail_bundle(v_array, js=[j_level], scales=[n_scale],

seg=1, num_of_modes=10,
full_path_filterbank=dir_filterbank)

get the modes and projection coefficients
proj_coeffs = pod_results['proj_coeffs']
modes = pod_results['modes']
eigvals = pod_results['eigvals']
normalize eigenvalues
eigvals = eigvals/eigvals.sum()*100

we can obtain the following two modes (mode 1 and 2):

16 Chapter 1. Contents

MRPOD Documentation, Release 1.0.0

Comparing to the results achieved with POD in the previous tutorial, the superior performance of MRPOD on this
problem is quite striking. The bandpass (shown as the red line in the phase portrait) can be narrowed to further
improve the denoising capability.

Coexistence of multiple dynamics

For the dataset with two superpositioned dynamics:

We can design two bandpasses to isolate the two distinct dynamics in the spectral domain and carry out MRPOD
accordingly. For the first (original) dynamic we can impose a lowpass filter and get:

1.4. Tutorials 17

MRPOD Documentation, Release 1.0.0

Analogously we can impose another bandpass filter to extract the added dynamic (by setting n_scale=1 in the Python
script above):

18 Chapter 1. Contents

MRPOD Documentation, Release 1.0.0

Now we have separated these two dynamics and we can inspect them without the spectral cross-talk that we saw in
the previous tutorial with POD. Using the reduced-order reconstruction introduced in the previous section, we can
visualize these two dynamics separately as:

Warning: The composite wavelet filters must be tailored to the specific problem at hand by considering the
necessary spectral isolations, the length of the dataset and the desired outcome. MRPOD is not a one-size-fits-all
technique.

1.4. Tutorials 19

MRPOD Documentation, Release 1.0.0

20 Chapter 1. Contents

Bibliography

[MRDMD] Kutz, J., Fu, X., Brunton, S. Multiresolution dynamic mode decomposition. SIAM Journal on Applied
Dynamical Systems 15 (2), 713-735, 2016.

[mPOD] Mendez, M. A., Balabane, M., Buchlin, J. M. Multi-scale proper orthogonal decomposition of complex
fluid flows. Journal of Fluid Mechanics 870, 988-1036, 2019.

[MRPOD] Yin, Z., Stöhr, M. Time–Frequency Localisation of Intermittent Dynamics in a Bistable Turbulent Swirl
Flame. Journal of Fluid Mechanics 882, A30, 2020.

21

MRPOD Documentation, Release 1.0.0

22 Bibliography

Python Module Index

m
mrpod.modal_decomposition, 7
mrpod.wavelet_transform, 2

23

MRPOD Documentation, Release 1.0.0

24 Python Module Index

Index

C
CompositeFilter (class in mr-

pod.wavelet_transform), 2

D
detail_bundle_1d() (mr-

pod.wavelet_transform.WaveletTransform
method), 4

detail_bundle_2d() (mr-
pod.wavelet_transform.WaveletTransform
method), 4

F
filter_cascade() (mr-

pod.wavelet_transform.CompositeFilter
method), 3

filter_matrix() (mr-
pod.wavelet_transform.WaveletTransform
method), 4

find_scale_index() (in module mr-
pod.wavelet_transform), 6

I
index_W (mrpod.wavelet_transform.WaveletTransform

attribute), 5

M
max_J() (mrpod.wavelet_transform.CompositeFilter

method), 3
mrpod.modal_decomposition (module), 7
mrpod.wavelet_transform (module), 2
mrpod_detail_bundle() (in module mr-

pod.modal_decomposition), 7
mrpod_eigendecomp() (in module mr-

pod.modal_decomposition), 7

O
ortho_check() (in module mr-

pod.modal_decomposition), 8

P
pod_eigendecomp() (in module mr-

pod.modal_decomposition), 8
pod_modes() (in module mr-

pod.modal_decomposition), 8
power_spectrum_1d() (mr-

pod.wavelet_transform.WaveletTransform
method), 5

power_spectrum_2d() (mr-
pod.wavelet_transform.WaveletTransform
method), 5

S
save_filterbank() (mr-

pod.wavelet_transform.CompositeFilter
method), 3

scale_to_frq() (in module mr-
pod.wavelet_transform), 6

sqd_gain_fcn() (mr-
pod.wavelet_transform.CompositeFilter
method), 3

T
time_shift() (in module mrpod.wavelet_transform),

6
transfer_fcn() (in module mr-

pod.wavelet_transform), 6

U
u_n() (mrpod.wavelet_transform.CompositeFilter

method), 3

W
wavelet_coeff_1d() (mr-

pod.wavelet_transform.WaveletTransform
method), 5

wavelet_coeff_2d() (mr-
pod.wavelet_transform.WaveletTransform
method), 5

25

MRPOD Documentation, Release 1.0.0

WaveletTransform (class in mr-
pod.wavelet_transform), 4

26 Index

	Contents
	Greetings
	Wavelet Transform
	Modal Decomposition
	Tutorials

	Bibliography
	Python Module Index
	Index

